
6.Working with files and directories

6.1 Introduction
When working in a Linux Operating System, you will need to know how to manipulate files and directories. Some

Linux distributions have GUI-based applications that allow you to manage files, but it is important to know how to

perform these operations via the command line.

The command line features a rich collection of commands that allow you to manage files. In this chapter you will learn

how to list files in a directory as well as how to copy, move and delete files.

The core concepts taught in this chapter will be important for later chapters as more file manipulate commands are

covered, such as how to view files, compress files and set file permissions.

6.3 Understanding Files and Directories
Files are used to store data such as text, graphics and programs. Directories (AKA, "folders") are used to provide a

hierarchical organization structure. This structure is somewhat different than what you might be used to if you have

previously worked on Microsoft Windows systems.

On a Windows system, the top level of the directory structure is called My Computer. Each physical device (hard drive,

DVD drive, USB thumb drive, network drive, etc.) shows up under My Computer, each assigned a drive letter, such

as C: or D:. A visual representation of this structure:

Like Windows, a Linux directory structure has a top level, however it is not called My Computer, but rather the root

directory and it is symbolized by the / character. There are also no drives in Linux; each physical device is accessible

under a directory, not a drive letter. A visual representation of a typical Linux directory structure:

This directory structure is called the filesystem by most Linux users.

6.3.1 Directory Path
Using the previous graphic as a point of reference, you will see that there is a directory namedsound under a directory

named etc, which is under the / directory. An easier way to say this, is to refer to the path.

A path allows you to specify the exact location of a directory. For the sound directory, the path would be /etc/sound.

The first / character represents the root directory while each other / character is used to separate the directory

names.

This sort of path is called an absolute path. With an absolute path, you always provide directions to a directory (or a

file) starting from the top of the directory structure, the root directory. Later in this chapter, we will cover a different

sort of path called a relative path.

The following graphic demonstrates three additional absolute paths:

6.3.2 Home Directory
The term home directory often causes confusion to beginning Linux users. To begin with, on most Linux distributions

there is a directory called home under the root directory: /home.

Under this /home directory there will be a directory for each user on the system. The directory name will be the same

as the name of the user, so a user named bob would have a home directorycalled /home/bob.

Your home directory is a very important directory. To begin with, when you open a shell, you should automatically be

placed in your home directory, as this is where you will do most of your work.

Additionally, your home directory is one of the few directories where you have the full control to create and delete

additional files and directories. Most other directories in a Linux filesystem are protected with file permissions, a topic

that will be covered in detail in a later chapter.

On most Linux distributions, the only users who can access any files in your home directory are you and the

administrator on the system (the root user). This can be changed by using file permissions.

Your home directory even has a special symbol that you can use to represent it: ~. If your home directory

is /home/sysadmin, you can just type ~ on the command line in place of/home/sysadmin. You can also refer to another

user's home directory by using the notation~user, where user is the name of the user account whose home directory

you want to refer to. For example, ~bob would be the same as /home/bob.

6.3.3 Current Directory
Your current directory is the directory where you are currently working in a terminal. When you first open a terminal,

the current directory should be your home directory, but this can change as you explore the filesystem and change to

other directories.

While you are in a command line environment, you can determine your current directory by using the pwd command:

Additionally, most systems have the default user prompt display the current directory:

[sysadmin@localhost ~]$

In the graphic above, the ~ character indicates your current directory. As mentioned previously, the ~ character

represents your home directory.

Normally the prompt only displays the name of the current directory, not the full path from the root directory down.

In other words, if you were in the /usr/share/doc directory, your prompt will likely just provide you with the

name doc for the current directory. If you want the full path, use the pwd command.

6.3.4 Changing Directories
If you want to change to a different directory, use the cd (change directory) command. For example, the following

command will change the current directory to a directory called/etc/sound/events:

Note that there is no output if the cd command is successful. This is one of those "no news is good news" type of things.

If you try to change to a directory that does not exist, you will receive an error message:

If you want to return to your home directory, you can either type the cd command with no arguments or use

the cd command with the ~ character as an argument:

6.3.5 Absolute vs. Relative Pathnames
Recall that a pathname is essentially a description of where a file or directory is located in the filesystem. You can also

consider a pathname to be directions that tell the system where to find a file or directory. For example, the cd

/etc/sound/events command means "change to theevents directory that you will find under the sound directory that

you will find under the etcdirectory that you will find under the / directory".

When you give a pathname that starts from the root directory, it is called an absolute path. In many cases, providing an

absolute path makes sense. For example, if you are in your home directory and you want to go to

the /etc/sound/events directory, then providing an absolute path to the cd command makes sense:

However, what if you were in the /etc/sound directory and you wanted to go to the/etc/sound/events directory? It

would be tedious to type the complete path to get to a directory that is only one level below your current location. In a

situation like this, you want to use arelative path:

A relative path provides directions using your current location as a point of reference. Recall that this is different

from absolute paths, which always require you to use the root directory as a point of reference.

There is a handy relative path technique that you can use to move up one level in the directory structure: the ..

directory. Regardless of which directory you are in, .. always represents one directory higher than your current

directory (with the exception of when you are in the / directory):

Sometimes using relative pathnames are a better choice then absolute pathnames, however this is not always the case.

Consider if you were in the /etc/sound/events directory and then you wanted to go to the /usr/share/doc directory.

Using an absolute pathname, you would execute the cd /usr/share/doc command. Using relative pathnames, you would

execute the cd ../../../usr/share/doc command:

Relative and absolute paths are not just for the cd command. Any time you specify a file or a directory you can use

either relative or absolute paths.

6.4 Listing Files in a Directory
Now that you are able to move from one directory to another, you will want to start displaying the contents of these

directories. The ls command (ls is short for list) can be used to display the contents of a directory as well as detailed

information about the files that are within a directory.

By itself, the ls command will list the files in the current directory:

6.4.1 Listing Colors
There are many different types of files in Linux. As you learn more about Linux, you will discover many of these types.

The following is a brief summary of some of the more common file types:

Type Description

plain file A file that isn't a special file type; also called a normal file

directory A directory file (contains other files)

executable A file that can be run like a program

symbolic link A file that points to another file

On many Linux distributions, regular user accounts are modified so that the ls command displays filenames, color-

coded by file type. For example, directories may be displayed in blue, executable files may be displayed in green, and

symbolic links may be displayed in cyan (light blue).

This is not a normal behavior for the ls command, but rather something that happens when you use the --color option

to the ls command. The reason why ls seems to automatically perform this coloring, is that there is an alias for

the ls command so it runs with the --coloroption:

As you can see from the output above, when the ls command is executed, it really runs the command ls --color=auto.

In some cases, you might not want to see all of the colors (they can be a bit distracting sometimes). To avoid using the

alias, place a backslash character (\) in front of your command:

6.4.2 Listing Hidden Files
When you use the ls command to display the contents of a directory, not all files are shown automatically.

The ls command doesn't display hidden files by default. A hidden file is any file (or directory) that begins with a dot (.)

character.

To display all files, including hidden files, use the -a option to the ls command:

Why are files hidden in the first place? Most of the hidden files are customization files, designed to customize how

Linux, your shell or programs work. For example, the .bashrc file in your home directory customizes features of the

shell, such as creating or modifying variables and aliases.

These customization files are not ones that you work with on a regular basis. There are also many of them, as you can

see, and having them displayed will make it more difficult to find the files that you do regularly work with. So, the fact

that they are hidden is to your benefit.

6.4.3 Long Display Listing

There is information about each file, called metadata that is sometimes helpful to display. This may include who owns

a file, the size of a file and the last time the contents of a file were modified. You can display this information by using

the -l option to the ls command:

In the output above, each line describes metadata about a single file. The following describes each of the fields of data

that you will see in the output of the ls -l command:

6.4.3.1 Human Readable Sizes
When you display file sizes with the -l option to the ls command, you end up with file sizes in bytes. For text files, a

byte is 1 character.

For smaller files, byte sizes are fine. However, for larger files it is hard to comprehend how large the file is. For

example, consider the output of the following command:

As you can see, the file size is hard to determine in bytes. Is 7181964 a large file or small? It seems fairly large, but it is

hard to determine using bytes.

Think of it this way: if someone were to give you the distance between Boston and New York using inches, that value

would essentially be meaningless because for a distance like that, you think in terms of miles.

It would be better if the file size was presented in a more human readable size, like megabytes or gigabytes. To

accomplish this, use the -h option to the ls command:

The -l option must be used with the -h option.

6.4.4 Recursive Listing
There will be times when you want to display all of the files in a directory as well as all of the files in all subdirectories

under a directory. This is called a recursive listing.

To perform a recursive listing, use the -R option to the ls command:

Note that in the previous example, the files in the /etc/ppp directory were listed first. After that, the files in

the /etc/ppp/peers directory were listed (there were no files in this case, but if any file had been in this directory, they

would have been displayed).

Be careful with this option; for example, running the command ls -R / would list every file on the file system, including

all files on any attached USB device and DVD in the system. Limit the use of the -R option to smaller directory

structures.

6.4.5 Sort a Listing
By default, the ls command sorts files alphabetically by file name. Sometimes, It may be useful to sort files using

different criteria.

To sort files by size, we can use the -S option. Note the difference in the output of the following two commands:

The same files and directories are listed, but in a different order. While the -S option works by itself, you can't really

tell that the output is sorted by size, so it is most useful when used with the -l option. The following command will list

files from largest to smallest and display the actual size of the file.

It may also be useful to use the -h option to display human-readable file sizes:

It is also possible to sort files based on the time they were modified. You can do this by using the -t option.

The -t option will list the most recently modified files first. This option can be used alone, but again, is usually more

helpful when paired with the -l option:

It is important to remember that the modified date on directories represents the last time a file was added to or

removed from the directory.

If the files in a directory were modified many days or months ago, it may be harder to tell exactly when they were

modified, as only the date is provided for older files. For more detailed modification time information you can use the -

-full-time option to display the complete timestamp (including hours, seconds, minutes...):

The --full-time option will assume the -l option automatically.

It is possible to perform a reverse sort with either the -S or -t options by using the -r option. The following command

will sort files by size, smallest to largest:

The following command will list files by modification date, oldest to newest:

6.4.6 Listing With Globs
In a previous chapter, we discussed the use of file globs to match filenames using wildcard characters. For example, we

demonstrated that you can list all of the files in the /etc directory that begin with the letter "e" with the following

command:

Now that you know that the ls command is normally used to list files in a directory, using theecho command may seem

to have been a strange choice. However, there is something about thels command that might have caused confusion

while we were discussing globs. This "feature" might also cause problems when you try to list files using glob patterns.

Keep in mind that it is the shell, not the echo or ls command, that expands the glob pattern into corresponding file

names. In other words, when you typed the echo /etc/e* command, what the shell did before executing

the echo command was replace e* with all of the files and directories within the /etc directory that match the pattern.

So, if you were to run the ls /etc/e* command, what the shell would really run would be this:

ls /etc/encript.cfg /etc/environment /etc/ethers /etc/event.d /etc/exports

When the ls command sees multiple arguments, it performs a list operation on each item separately. In other words,

the command ls /etc/encript.cfg /etc/environment is essentially the same as ls /etc/encript.cfg; ls /etc/environment.

Now consider what happens when you run the ls command on a file, such as encript.cfg:

As you can see, running the ls command on a single file results in the name of the file being printed. Typically this is

useful if you want to see details about a specific file by using the -loption to the ls command:

However, what if the ls command is given a directory name as an argument? In this case, the output of the command is

different than if the argument was a file name:

If you give a directory name as an argument to the ls command, the command will display thecontents of the directory

(the names of the files in the directory), not just provide the directory name. The filenames you see in the example

above are the names of the files in the/etc/event.d directory.

Why is this a problem when using globs? Consider the following output:

As you can see, when the ls command sees a filename as an argument, it just displays the filename. However, for any

directory, it will display the contents of the directory, not just the directory name.

This becomes even more confusing in a situation like the following:

In the previous example, it seems like the ls command is just plain wrong. But what really happened is that the only

thing that matches the glob /etc/ev* is the /etc/event.d directory. So, the ls command only displayed the files in that

directory!

There is a simple solution to this problem: when you use glob arguments with the ls command, always use the -

d option. When you use the -d option, then the ls command won't display the contents of a directory, but rather the

name of the directory:

6.5 Copying Files
The cp command is used to copy files. It requires that you specify a source and a destination. The structure of the

command is as follows:

cp [source] [destination]

The source is the file you wish to copy. The destination is where you want the copy to be located. When successful,

the cp command will not have any output (no news is good news). The following command will copy the /etc/hosts file

to your home directory:

Remember; the ~ character represents your home directory.

6.5.1 Verbose Mode
The -v option will cause the cp command to produce output if successful. The -v option stands for verbose:

When the destination is a directory, the resulting new file will have the same name as the original file. If you want the

new file to have a different name, you must provide the new name as part of the destination

6.5.2 Avoid Overwriting Data
The cp command can be destructive to existing data if the destination file already exists. In the case where the

destination file exists , the cp command will overwrite the existing file's contents with the contents of the source file.

To illustrate this potential problem, first a new file is created in the sysadmin home directory by copying an existing

file:

View the output of the ls command to see the file and view the contents of the file using the more command:

In the next example, you will see that the cp command destroys the original contents of the example.txt file. Notice that

after the cp command is complete, the size of the file is different from the original (158 bytes rather then 18) and the

contents are different as well:

There are two options that can be used to safeguard against accidental overwrites. With the –I (interactive) option,

the cp will prompt before overwriting a file. The following example will demonstrate this option, first restoring the

content of the original file:

Notice that since the value of n (no) was given when prompted to overwrite the file, no changes were made to the file.

If a value of y (yes) was given, then the copy process would have taken place.

The -i option requires you to answer y or n for every copy that could end up overwriting an existing file's contents.

This can be tedious when a bunch of overwrites could occur, such as the example demonstrated below:

As you can see from the example above, the cp command tried to overwrite three existing files, forcing the user to

answer three prompts. If this situation happened for 100 files, it could become very annoying, very quickly.

If you want to automatically answer n to each prompt, use the -n option. It essentially stands for "no rewrite".

6.5.3 Copying Directories
In a previous example, error messages were given when the cp command attempted to copy directories:

Where the output says "...omitting directory...", the cp command is saying that it cannot copy this item because the

command does not copy directories by default. However, the -r option to thecp command will have it copy both files

and directories.

Be careful with this option: the entire directory structure will be copied. This could result in copying a lot of files and

directories!

6.6 Moving Files
To move a file, use the mv command. The syntax for the mv command is much like the cpcommand:

mv [source] [destination]

In the following example, the hosts file that was generated earlier is moved from the current directory to

the Videos directory:

When a file is moved, the file is removed from the original location and placed in a new location. This can be somewhat

tricky in Linux because users need specific permissions to remove files from a directory. If you don't have the right

permissions, you will receive a "permission denied" error message:

A detailed discussion of permissions is provided in a later chapter.

6.7 Moving Files While Renaming
If the destination for the mv command is a directory, then the new file will have the same name as the original file.

However, if the destination is not a directory, then the file is renamed during the move process:

6.7.1 Renaming Files

The mv command is not just used to move a file, but also to rename a file. For example, the following commands will

rename the newexample.txt file to myexample.txt:

Think of the previous mv example to mean "move the newexample.txt file from the current directory back into the

current directory and give the new file the name myexample.txt".

6.7.2 Additional mv Options
Like the cp command, the mv command provides the following options:

Option Meaning

-i Interactive move: ask if a file is to be overwritten.

-n Do not overwrite a destination files' contents

-v Verbose: show the resulting move

There is no -r option as the mv command will by default move directories.

6.8 Creating Files
There are several ways of creating a new file, including using a program designed to edit a file (a text editor). In a later

chapter, text editors will be covered.

There is also a way to simply create a file that can be populated with data at a later time. This is a useful feature since

for some operating system features, the very existence of a file could alter how a command or service works. It is also

useful to create a file as a "placeholder" to remind you to create the file contents at a later time.

To create an empty file, use the touch command as demonstrated below:

Notice the size of the new file is 0 bytes. As previously mentioned, the touch command doesn't place any data within

the new file.

6.9 Removing Files
To delete a file, use the rm command:

Note that the file was deleted with no questions asked. This could cause problems when deleting multiple files by

using glob characters, for example: rm *.txt. Because these files are deleted without question, a user could end up

deleting files that were not intended to be deleted.

Additionally, the files are permanently deleted. There is no command to undelete a file and no "trash can" from which

to recover deleted files. As a precaution, users should use the -i option when deleting multiple files:

6.10 Removing Directories
You can delete directories using the rm command. However, the default usage (no options) of therm command will fail

to delete a directory:

If you want to delete a directory, use the -r option to the rm command:

When a user deletes a directory, all of the files and subdirectories are deleted without any interactive question. It is

best to use the -i option with the rm command.

You can also delete a directory with the rmdir command, but only if the directory is empty.

6.11 Making Directories
To create a directory, use the mkdir command:

